Shafts
Like other transmissions, a manual transmission has several shafts with various gears and other components attached to them. Typically, a rear-wheel-drive transmission has three shafts: an input shaft, a countershaft and an output shaft. T
he countershaft is sometimes called a layshaft.
In a rear-wheel-drive transmission, the input and output shaft lie along the same line, and may in fact be combined into a single shaft within the transmission. T
his single shaft is called a mainshaft. The input and output ends of this combined shaft rotate independently, at different speeds, which is possible because one piece slides into a h
ollow bore in the other piece, where it is supported by a bearing. Sometimes the term mainshaft refers to just the input shaft or just the output shaft, rather than the entire assembly.
In some transmissions, it's possible for the input and output components of the mainshaft to be locked together to create a 1:1 gear ratio, causing the power flow to bypass the countershaft. The mainshaft then behaves like a single, solid shaft, a
situation referred to as direct drive.
Even in transmissions that do not feature direct drive, it's an advantage for the input and output to lie along the same line, because this reduces the amount of torsion that the transmission case has to bear.
Under one possible design, the transmission's input shaft has just one pinion gear, which drives the countershaft. Along the countershaft are moun
ted gears of various sizes, which rotate when the input shaft rotates. These gears correspond to the forward speeds and reverse. Each of the forward gears on the countershaft is permanently meshed with a corresponding gear on the output shaft. However, these driven gears are not rigidly attached to the output shaft: although the shaft runs through them, they spin independently of it, which is made possible by bearings in their hubs. Reverse is typically implemented differently, see the section on Reverse.
Most front-wheel-drive transmissions for transverse engine mounting are designed differently. For one thing, they have an integral final drive and
differential. For another, they usually have only two shafts; input and countershaft, sometimes called input and output. The input shaft runs the whole length of the gearbox, and there is no separate input pinion. At the end of the second (counter/output) shaft is a pinion gear that mates with the ring gear on the differential.
Front-wheel and rear-wheel-drive transmi
ssions operate similarly. When the transmission is in neutral, and the clutch is disengaged, the input shaft, clutch disk and countershaft can continue to rotate under their own inertia. In this state, the engine, the input shaft and clutch, and the output shaft all rotate independently.
Dog clutch
The gear selector
does not engage or disengage the actual gear teeth which are permanently meshed. Rather, the action of the gear selector is to lock one of the freely spinning gears to the shaft that runs through its hub. The shaft then spins together with that gear. The output shaft's speed relative to the countershaft is determined by the ratio of the two gears: the one permanently attached to the countershaft, and that gear's mate which is now locked to the output shaft.
Locking the output shaft with a gear is achieved by means of a dog clutch selector. The dog clutch is a sliding selector mechanism
which is splined to the output shaft, meaning that its hub has teeth that fit into slots (splines) on the shaft, forcing it to rotate with that shaft. However, the splines allow the selector to move back and forth on the shaft, which happens when it is pushed by a selector fork that is linked to the gear lever. The fork does not rotate, so it is attached to a collar bearing on the selector. The selector is typically symmetric: it slides between two gears and has a synchromesh and teeth on each side in order to lock either gear to the shaft.the gear selector
Synchromesh
If the teeth, the so-called dog teeth, make contact with the gear, but the two parts are spinning at different speeds, the teeth will fail to engage and a loud grinding sound will be heard as they clatter together. For this reason, a modern dog clutch in an automobile has a synchronizer mechanism or synchromesh, which consists of a cone clutch and blocking ring. Before the teeth can engage, the cone clutch engages first which brings the selector and gear to the same speed using friction. Moreover, until synchronization occurs, the teeth are prevented from making contact, because further motion of the selector is prevented by a blocker (or "baulk") ring. When synchronization occurs, friction on the blocker ring is relieved and it twists slightly, bringing into alignment certain grooves and notches that allow further passage of the selector which brings the teeth together. Of course, the exact design of the synchronizer varies from manufacturer to manufacturer.
The synchronizer[1] has to change the momentum of the entire input shaft and clutch disk. Additionally, it can be abused by exposure to the momentum and power of the engine itself, which is what happens when attempts are made to select a gear without fully disengaging the clutch. This causes extra wear on the rings and sleeves, reducing their service life. When an experimenting driver tries to "match the revs" on a synchronized transmission and force it into gear without using the clutch, the synchronizer will make up for any discrepancy in RPM. The success in engaging the gear without
clutching can deceive the driver into thinking that the RPM of the layshaft and transmission were actually exactly matched. Nevertheless, approximate "rev-matching" with clutching can decrease the general delta between layshaft and transmission
Reverse
The previous discussion normally applies only to the forward gears. The implementation of the reverse gear is usually different, implemented in the following way to reduce the cost of the transmission. Reverse is also a pair of gears: one gear on the countershaft and one on the output shaft. However, whereas all the forward gears are always meshed together, there is a gap between the reverse gears. Moreover, they are both attached to their shafts: neither one rotates freely about the shaft. What happens when reverse is selected is that a small gear, called an idler gear or reverse idler, is slid between them. The idler has teeth which mesh with both gears, and thus it couples these gears together and reverses the direction of rotation without changing the gear ratio.
0 comments:
Post a Comment